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Connection Machine Software Conversion
of a Navy Oceans Model

1 INTRODUCTION

Models which solve a set of partial differential equations form a large and important category
of scientific applications. These applications are commonly structured to run well on vectorizing
machines such as the Cray X-MP, Cray Y-MP, and the Convex C series.

The introduction of highly parallel machines [1, 2] with peak performance significantly exceed-
ing the Cray machines has sparked interest in running scientific models on these new machine
architectures. The demonstration over the past few years of many models restructured success-
fully for these machines has led to growing interest in code conversion. This is in part due to
the widespread belief that economic factors, principally the leveraging of commodity micropro-
cessor and memory technology, will make highly parallel machines more cost-effective than vector
architectures.

This document describes one such conversion, of the Navy model called OCEANS, starting
with a Cray Y-MP/8 version in Fortran 77 and ending with a Fortran 90 [41 version for the
Connection Machine CM-200. Data mapping, conversion planning, and performance points of
view are considered.

2 BACKGROUND

There are at least three basic solution methods for sets of partial differential equations. The
method of finite differences uses the definition of a derivative to obtain approximations for rates of
change of various quantities. Finite differencing is the most commonly employed method and has
the most elementary theory.

An alternative method takes an approach using Fourier transforms. The primary advantage of
a spectral method is that derivatives have simple forms and the Fast Fourier Transform algorithm
makes conversion from spectral variables to grid variables relatively inexpensive.

Another approach in common use is the method of finite elements. This method seeks coeffi-
cients for functions which make up the desired solution. It can be thought of as a generalization
of the spectral method.
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Models may employ combinations of these methods. Spectral models in the horizontal may use
finite differencing techniques in the vertical.

The model to be converted is a finite difference model in the horizontal and employs a specialized
technique using vertical "layers" which is distantly related to both spectral and finite element
approaches. The use of 6 layers provides adequate resolution and predictive power for models of
basin areas up to global models.

3 DATA LAYOUT

A number of data layouts are possible but finite difference models of ocean or atmospheric
variables tend to have simple mappings to the CM-200. Finite difference primitives are typically
implemented using nearest neighbor communications, the most efficient communications primitives
for the Connection Machine. The model itself will determine whether systems of simultaneous
equations must be solved and this can affect the choice of memory layout.

A goal of the conversion was to produce a code suitable for use as a benchmark. Toward thi.b
end, it was decided to use the slicewise data model which is more flexible than the older PARIS
model and is more consistent with the Connection Machine CM-5. In the slicewise model, array
shapes should generally be a multiple of 4 in each axis. The precise rules are complex but slightly
more lenient.

Most arrays of the model have a shape of (2163, 1041,5,2) where the first two axes have hori-
zontal extent, the third axis is over the vertical layers, and the last axis indexes current and prior
timestep values. Three of the positions in the first axis and one of the positions in the second
axis contain copies of other elements so that shifted references can be made without conditional
tests. This is an aid to vectorization but is a detriment to the CM-200 for two reasons. First, the
communication operations necessary to maintain the extra columns are very expensive. Second,
the resulting shape is not an efficient one for the CM-200.

Like the atmosphere, ocean models tend to be more computationally complex along vertical
columns than in horizontal directions. It is therefore common that vertical columns be allocated
completely within a single processor. This course of action was taken in the model conversion.
For the other two axes, initial implementations were made with the axes unchanged. A later
implementation with more CM-200 compatible dimensions was also undertaken.

4 SOFTWARE STRUCTURE

The software structure in the original model is well organized compared to many other ex-
isting Fortran 77 codes. The bulk of the computation is contained in a series of small, regular
routines beginning with the leading characters sh, mh, and ch. Several sets of support routines for
initialization, history output, land masking, and miscellaneous functions are also included. The
land masking routines are the most significant among these non-computational routines since they
involve complicated operations at each time step.

The main program is large and serves the function of hiding the layer structure from most
routines. Low level computation routines see only two dimensional slices from truly 4 dimensional
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arrays. The ordering of subscripts is important in taking the two dimensional array slices. In a
non-distributed memory setting, the first two axes are contiguous for a given layer and timestep.
This means that isolating a slice involves no data motion but simply a subscript calculation. The
first element of a 2 dimensional slice for layer k and timestep 2 is at position (1, 1, k, 2) in the array.
Since Fortran 77 does not distinguish in parameter passing between an array and its first element,
a contiguous subarray has effectively and dynamically been equivalenced. This practice is common
in Fortran 77 codes. Unfortunately, in a distributed memory setting such as the CM-200 implicit
equivalence techniqu-s do not work or do not always work.

Current compiler restrictions have also been a factor in subscript order. Present CM Fortran
compilers require that all serial axes precede the parallel one. This restriction is contrary to the
normal, and most consistent usage patterns. To satisfy these restrictions, the subscripts of the
main arrays in the model were reordered to place the last two axes, layer and timestep, first. In
the present compiler, this results in efficient passing of two-dimensional horizontal sections to the
low level computation routines. It is not known, however, whether future compilers will continue
to generate the best code for this case.

The annotated indented call structure is shown in Figure 1. Note that a routine is listed more
than once if calls appear in the program text in more than one place and that its entire subtree is
reproduced at each call.
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Call Tree IFunction
oceans driver

aremh5 explicit hydrodynamic ocean model
xxinit read in namelist
xhinit calculates g-prime related constants - hydrodynamic models
xxpori read in (via namelist) inflow values and outflow port friction

and initialize inflow profile(s)
xxtopo reads in topography (hd and htot) from data file and gener-

ates hb
. xxrang fixes indexes to elements of al delimiting its range of values
. xxlndi setup data structures describing region
. zlidxi setup index vectors pointing to 'boundary' nodes
. . zllndi set up line-bsed representations of land areas
S.... xxmapp outputs integer map of al
. . ziloop initialize j-dependent 'safe' i-loop ranges, and the 'safe' enve-

lope for history file fields
xxcset matrix initialization by constant al = const
xxlndh set unwanted nodes of h to 'flag' (i.e. all land nodes)
. zllndh sets land points in h to 'flag'
xxmass sum hnew correcting for 'spherical' gravity
xxporh tests postition of ports and marks them in hnew
xzmapp outputs integer map of al
xxawnd user supplied analytic wind forcing
* . *prt prints windstress fields
xxwndi initialize winds at day wstart of first wind file

xxwprt prints windstress fields
xhhisi initialize h,u,v at t = tstart from (input) history file

Fig. I - Call Tree of Original Code-Part 1
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Call Tree Function
xxporj complete the initialization of inflow ports, by calculating ex-

isting transport, velocity, and direction at these ports
xxtimi initialize time series (work done by user supplied routines)
xh•gai initialize output files for t = tstart
xxtimx take a sample for one or more time series
xhgrat ouputs one layer of grahpics at day tday
xxsavh saving and restoring hnld in predictor-corrector timestep
xxcopy matrix copy al = a2
xxpors save u,v,h outflow values from I and 2 time steps back
xxpore save outflow values from what will be 3 time steps back
xxstrt reset time step dependent constants to reflect the new dt -

only needed when changing integration step type
xxstra reset dependent constants to reflect the new a and dt
Mhvel0 form velocity components from transports
xxlndv set boundary conditions for velocity components uv and vv

zlidxz sets the zero boundary values for u or v
zlidxn sets the non-zero boundary values for u or v

Xxporv set velocities at all ports
xzdif f matrix subtration al = b; b,2
mhitx3 u momentum equation - interfacial stress term special cases

Fig. 2 - Call Tree of Original Code-Part 2
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Call Tree Function
mhity3 v momentum equation - interfacial stress term special cases
chmudO u momentum equation - diffusion and dissipation terms
mhwtxO u momentum equation - wind stress term
chmuaO momentum equation - advective terms
mhmucO u momentum equation - coriolis terms
shrmudO u momentum equation - diffusion and dissipation terms
shmuaO u momentum equation - advective terms
chmvdO v momentum equation - diffusion and dissipation terms
mhwtyO v momentum equation - wind stress term
chmvaO v momentum equation - advective terms
mhimvcO v momentum equation - coriolis terms
shmvdO v momentum equation - diffusion and dissipation terms
xxmuit I layer of aO = sum (k= 1,kh) of sk * ak - used in calculating

pressures and the lagrange multiplier transformation
chmupO u momentum equation - pressure gradient term
mhmvpO v momentum equation - pressure gradient term
sbhmupO u momentum equation - pressure gradient term
chcntO continuity equation
shcntO continuity equation
xxaddO matrix addition al = bl + b2
mhitx2 u momentum equation - interfacial stress term
mhity2 v momentum equation - interfacial stress term
xxlndt boundary conditions for u and v and h if periodic
. zlidxz sets the zero boundary values for u or v

. . . zlidxn sets the non-zero boundary values for u or v
xxport- find transports at all ports
xxlndf set unwanted nodes of u and v to 'flag' (i.e. all land nodes

not next to a sea node)
. . . zllndt sets land points in u and v to 'flag'

Fig. 3 - Call Tree of Original Code--Part 3
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Call Tree Function
xxavrg elemental matrix average al = (al + a2)/n
xxwndr read next wind input and update txf tyf
xzspot saves one point of h and tx for printing every 12 timesteps
xxlndv set boundary conditions for velocity components uv and vv

zlidxz sets the zero boundary values for u or v
zlidxn sets the non-zero boundary values for u or v

sfuua0 u momentum equation - advective terms
shmuvaO v momentum equation - advective terms

xhavew writes out unld,vnld,hnld fields to scratch file
xhaver average 'navrg' time levels reads unld,vnld,hnld from scratch

file
xxwndm roll back tx and ty 'kroll' timesteps
xhhisw write one layer to history file at time tday
xxrndp printout wind file statistics (only called after x*hisw)
xx~iprt prints windstress fields
Xhpout prints out velocity and h fields (and mass balance) fox layer

.. mhvelO form velocity components from transports
. xxlndv set boundary conditions for velocity components uv and vv

zlidxz sets the zero boundary values for u or v
zlidxn sets the non-zero boundary values for u or v

xxporv set velocities at all ports
. . . xxlndf set unwanted nodes of u and v to 'flag' (i.e. all land nodes

not next to a sea node)
. . . . z11ndt sets land points in u and v to 'flag'

. . . xxlndh set unwanted nodes of h to 'flag' (i.e. all land nodes)
zllndh sets land points in h to 'flag'

xxfprt prints the field al and mesh coordinates in degrees
. . . xxmass sum hnew correcting for 'spherical' gravity

Fig. 4 - Call Tree of Original Code-Part 4
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5 CONVERSION PLAN AND RESULTS

The memory layout of the basic history variables was systematically changed for the CM-
200, moving the last two arguments to the beginning of the subscript list. These two axes were
also declared to be serial, meaning that they were allocated within a processor. In this way 2

dimensional slices can be extracted without data motion as in the Fortran 77 case. The placement

of serial axes at the beginning of the subscript list is a current CM-200 software limitation.

The regular software structure of the original model was used as the basis of the conversion. The
module groups were converted and tested individually using a driver and simulated data for each
group. The target routines have very little conditionalization but multiple tests were performed to
the extent possible for alternative paths.

Each driver used a random number generator to provide simulated data inputs. This generator
is a standard one that does not rely on knowledge of the binary representation of floating point
-values. It is therefore transportable and generates the same stream of numbers on a Convex C220,
where the original Fortran 77 code was run, and on the CM-200. This allowed answers from the
Convex to be cumnpared directly with CM-200 results.

Since entire arrays of data were generated, a statistical approach was taken to verification. A set
of 6 numbers, the minimum, maximum, L2 norm, sum, mean, and sample variance were generated
for the inputs and outputs of each routine. Statistics from the Convex were automatically checked

against CM-200 statistics using a program. Agreement to 10 significant figures was obtained
although problems were encountered deciding when to employ relative error tests versus absolute
error tests.

The above approach allowed the basic computation routines to be tested to a high degree of
confidence. The same approach was also used with some of the support routines although their
functions did not always fit the same pattern as the computational routines.

An exception to the pattern was a set of routines to handle topography and boundaries. This
code also included managing the edges of the horizontal extents as mentioned previously. In this
group of routines, an almost complete rewrite was necessary. The new method employs masks to
identify the elements requiring specialized boundary processing. The input of topography data,
which originally was done serially, became a serious performance problem in the large sizes. A

one-time transfer to the DataVault was performed, allowing a f!st read directly to the Connection
Machine.

By far the most difficult conversion problems encountered came during integration of the rou-

tines. Since the basic functionality of the routines had already been established to a high confidence
level, the problems were known to lie in the main routine or in the interface between the main and
subordinate levels. Most problems were traced to layout differences between arrays declared in the
main routine and passed to a subroutine and the subroutine formal parameter declarations. There
were no available mechanisms at the time to detect these errors except direct visual checking.

One method, use of interface blocks, has since emerged as a way to detect these mismatches. A
degree of checking is present in the current compiler version but the reliability and thoroughness

is not clear.

Another possible method is a standalone tool to either generate interface blocks or produce a
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listing of calls, actual arguments, subroutine declarations and formal arguments. Either of these
approaches could result in a tool with high value for similar software conversions and even for new
code development.

6 PERFORMANCE MEASUREMENTS

The original benchmark program has a very large memory space, amounting to 95 million words
on a Cray Y-MP/8. This size is too large to run on the Convex and also too large to run on SK
CM-200 processors. A subsampled version with about 1% of the total grid points was used for
software conversion and most testing.

Figure 5 shows a breakdown of timing into the more significant routines. The primary obser-
vation to make from this figure is that the bulk of the processing takes place in the sh and Mh
routines, together accounting for 86% of the total run time. Of these, the sh routines are the more
important, containing 56% of the total run time.

The distribution of times would be expected to shift in a CM-200 version and this is indeed
the effect seen. The primary reason for the shift is that the Convex (and the Cray) timings are
dominated by the cost of the floating point operations whereas the CM-200 timings are dominated
by the communications operations.

Percent Cumulative i Routine(s)
12 12 Main
17 29 shmuaO
16 45 shmva0
10 55 shmudO
10 65 shmvdO
a 68 shcnt0
4 72 shmupO
8 80 mhvelO
5 85 mhmvcO
5 90 mhmucO
4 94 mhmvpO
2 96 mhitx3
2 98 mhity3
0 98 mhwtxO
0 98 mhwtyO
2 100 in group
0 100 xx group
0 100 xh group

Fig. 5 - Convex Timings-Original Model

The performance of the initial CM-200 version is shown in Figure 6. The distribution of times
is slightly different than for the Convex but sh and mh routines still account for 86% of the total
run time and sh routines make up 63% of the total. The actual run time on 8K processors is
approximately half that of the Convex, a rate that previously had represented about half of the
speed of the Cray X-MP.



Percent Cumulative Routine(s)
4 4 Main
14 18 shamuaO
15 33 sbmva0
13 46 shmudO
13 59 shmvdO
8 67 shcntO
3 70 shmupO

2 72 mhve10
4 76 mhmvcO
4 80 mhmuc0
2 82 mhmvp0
0 82 mhitx3
0 82 mhity3

3 85 mhwtx0
3 88 mhwtyO
8 96 In group
4 100 xx group

0 100 xh group

Fig. 6 - Inititl CM-200 Timings

During conversion, several Fortran 90 spread operations were introduced in the sh and mh
routines. While it was known that these would be expensive, they were used so that a working
version could be obtained as directly as possible to act as a starting point for future optimized
versions.

The spread arrays are related to the discretization of the grid on the surface of the earth and
are invariant once computed during initialization. As a second version, the spreads were moved to
the main routine where they could be computed once and reused.

In addition to removing spreads, certain shifted quantities which were reused were also moved
from the computational routines into main. These quantities change during the time stepping and

hence the shifts must be periodically redone. Nevertheless, a net savings is generated since the
cost of communicationb operations is high. The results of the first optimized version are shown in
Figure 7. Now the distriL-tion of times is quite different with 49% to sh, 13% to mh, and 34% of
the run time attributed to remaining routines.

In the original Cray version, no calculations were performed over land, giving about a 20%

speed increase on the Cray The conditionalization required for the CM-200 does not result in a

speed improvement because of the SIMD nature of the machine and in fact reduces performance.
Allowing calculations over land yielded a code which was slightly faster and extremely uncluttered.

A final phase of land masking at the end of each timestep was retained.

In absolute performance terms, this version is about twice as fast as before and about 4 times

faster than the Convex version.

One final version was produced with assistance from the primary code maintainer, Alan Wall-

craft of NRL Stennis. This version eliminates the overlapping rows and columns of the basic
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Percent Cumulative Routine(s)

6 6 Main
10 16 shmuaO
12 28 shmvaO
11 39 shmudO
11 50 shmvdO

5 55 shcntO
4 59 shmupO
4 63 mhvelO
2 65 mhmvc0
2 67 MhmucO
3 70 mhmvpO
0 70 inhitx3
0 70 =hity3
1 71 mhwtx0
1 72 mhvtyO

16 88 in group
11 99 xx group

1 100 jh group

Fig. 7 - Optimized CM-200 Timings

2 dimensional shape Fortran 90 cshift and eoshift operations were used to accomplish the
same purpose as the extra rows and columns. Also, the (2163,1041) dimensions were altered
to (2048,1152) to be more efficient on the Connection Machine. The first axis, representing the
east/west direction, provides best performance for the cshift operation since it is a power of 2.

The resulting code is not only simpler but much more efficient. The run time from this version
now appears to eclipse the Cray Y-MP/1 performance on 8K CM-200 processors. The performance
ratio is approximately 2 to 1 so that a full 64K CM-200 would be faster than a Y-MP/8. This has
not been tested so the claim must be taken as tentative. ?erformance of the new Cray Y-MP C90
is about three times that of previous Y-MPs per processor and the maximum number of processors

has doubled to 16. A comparison between a 64K Connection Machine CM-200 and a Y-MP/16
C90 would probably favor the C90.

7 CONCLUSIONS

The code conversion of the model was straightforward. A basic conversion incorporating no
substantive changes to the array shapes was produced. The performance of this version was
approximately half that of the Cray, primarily because of inefficient array shapes.

An improved version with more efficient array shapes was then produced with the help of the
code maintainer. The new version had greatly improved performance, significantly better than the

Cray Y-MP.

It is worth noting that efficient array shapes on the Connection Machine are very unlikely to

be found in existing Cray codes. This is due to the phenomenon of memory bank conflicts in past

Cray architectures when array sizes are powers of two or contain powers of two. Cray codes have,
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in fact, frequently been altered to produce just the odd-sized array dimensions encountered in the
Fortran 77 version of the code to avoid memory bank conflicts.

The code was converted for the Connection Machine CM-200 under the slicewise modl. Fur-
thermore, strictly CM-200 optimizations were not incorporated since an easy port to the Connection
Machine CM-5 was desired. The next step in the conversion process is to run the CM-200 code on
a CM-5 equipped with vector units. Performance there is expected to be significantly better than
on the CM-200, perhaps an order of magnitude better.
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